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R MONTE CARLO SIMULATIONS GF FERMION SYSTEMS:
THE DETERMINANT METHOD

J. E. Gubernatis
Theoretical Division
Los Alamos National Laboratory
Los Alamos, NM 87545

Described are the details for performing Monte Carlo simulations on systems of
fermions at finite temperatures by use of a technique called the Determinant
Method. 'This method is based on a functional integral formulation of the
fermion problem {Blankenbecler et al., Phys. Rev. D 24, 2278 (1981)] in which
the quartic fermion-fermion interactions that exist for certain models are
transformed into bilinear ones by the introduction [J. Hirsch, Phys. Rev. B 28,
4059 (1983)] of Ising-like variables and an additional finite dimension. It is
on the transformed problem the Monte Carloc simulations are performed. A brief
summary of research on two such model problems, the spinless fermion lettice
gas and the Anderson impurity problem, is also given.



MONTE CARLG SIMULATIONS OF FERMION SYSTEMS:
THE DETERMINANT METHOD

INTRODUCTION

In the past several years an upswell in interest and activity in performing
Mohte Carlo simulations of systems obeying the laws of quantum mechanics has
occurred. Csusing this upswell is btoth the development of algorithms for per-
forming the simulations and the availability of computers big and fast enough
to make the use of such algorithms practical. Indeed for some problems the
use of a CRAY-like computer is essential.

In contrast to classical statistical mechanics, where the phase "Monte Carlo
simulations" refers still to the method developed by Metropolis et al., in
cuantum statistical mechanics there are several quite distinct Monte Carlo
methods. There is a variational method, Green's function method, path-integral
method, determinant method, etc. Although each method has the importance
sampling concept expressed by Metropolis et al. at its core, their details, and
the basis for their details, are often distinct. For example, the methods

work either at zero temperature or finite temperature, but not both. Often
they work well for bosons but require supplementary procedures to work for fer-
mions. The subject of this paper, the determinart method,?’'3 works for fer-
mions at finite temperatures, although it is rooted in an approach that allows
the simulations of fermions, bosons and their interactions.

Our description of the determinant method will develop in several stages.
First, we will present a broad view of its major parts. Emphasis will be on
the irtroduction of additional degreesz of freedom to transform the original
quantum calculation into a calculation involving classical degrees of freedom.
Then details to the major parts will be added. Following this, sev-ral points
useful fcr its implementation are discussed. Next an illustration is given

of how various thermodynamic and correlation functions are calculated. Then,
in conclusion, we present a very brief description of the results of simulating
the prgperties of the spinless fermion lattice gas* and Anderson impurity
model.

BASIC 1DEA

What one wants to evaluate are thermodynamic averages of different physical
quantities. Such an average for a typical quantity A is defined by

<A> =r-——Z (1)

where the partition function Z is

Z=Tr e-BH (2)



The problex is in general the inability not only to exponentiate the quantum
bhamiltonian but also to perform the required trace. 7To mitigate these prob-
lems, we make an approximatiocs that introcduces additional degrees of freedom
and an extra (finite) dimension iunto the problem. The approximation is con-
trolled in the sense that the error in priaciple can be made as small as we
like. For each counfiguration of these new variables the spproximstion
corresponds to replacing the original hamiltonisn by an effective one for which
ve can perform the trace over the original (i.e. the fermion) degrees of
freedom. Symbolically, we have

Tro TrAe-BhIO]
<A> ~ (3)
T Tr Tre-ﬂh[U]
(]
Tr_2(a)(z(0] Teae PRI
- — (4)
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Tr0 A(o)z|a]

Troz[o] ' (5)

where O represents a configuration of the new degrees of freedom and

-Bh(o] (6)

z[o] = Tre

is the partition function of Lhe configuration-dependent effective hamiltonien.
It is the average represented by (5) that is done by the Monte Carlo methgds;
however, instead of using the standard statistical probabiliiLy density e /Z
we now must use z|0]/Z. It is in 2{0] where the quantum mechanical details

are embodied.

SOME DETAILS
THE TROTTER APPROXIMATION
To add details of the method, we foius on the partition function. The first

step is to iutroduce a small parameter T into the problem. Because the
hamiltonisn always commutes with itself, we can write

2 =Tr e_ﬂH

= Tr e_tH e-tH - e-tH D)



with t = B/L where L is the gvnbet of e-tn factors is the argument of the
trace. We pow approximate e . To do this we note that

H= Ho + "I

vhere H . is the non-interacting part of the hamiltonian, which is quadratic in
the fergion degrees of freedom, and H. is the interacting part, which for the
models we consider is quartic in the }ernion degrees of freedom. Since H0 and
HI do not commute we use the Trotter approximation® to write

-TH, -tH
e T™H _ e 0e I + 0(12)

Hence we in principle can make this a very good approximation by making T
small. Having done this, we have a piece cxp(-tH.) which generally is
easily evaluated, but are still faced wilh exponentiating H,. This step is
accomplished for certain models by uring a form of the Hubbard-Stratanovich
transformation.®

THE HUBBARD-STRATANOVICH TRANSFORMATI1ON

This transformation is best illustrated by an example. For our example we
choose the Hubbard hamiltonian

+
. ¢C. +*+ c. c.
i85 js Js 1s

H= -1t b3 (c

3 +U2Zn. n, (8)
<ij>s i

it 1d

where i refers to a lattice site, <ij> to a nearest neighbor pair of sites, s
te a up or down spin, where n._ = c¢. ¢, is the fermion number operator, and

c, and C.q are fermion creati8n and®dd8truction operators. For this
hdfiltonidn

H, =U ZIn,,n, (9)
i

The transformation uses the following identity3

"U“1¢"j¢ 1 _tJoi(l)("jf-"i¢
E I e

. y ) - IU/2(ni1+ni¢)
oi(£)=11

with cosh tJ = etU/Z’ whicn 18 applied to each site in (9) and to each factor
in (7). 1If the sites are arranged in a two-dimensional lattice, at eacn site



we have an Iszing sp.n at L sites in a third dimension. Froa more tformal
approaches to the problem this third dimension cogiespondl to an imaginary time
axis obtained by the change of variable it = (kT) ~. Additionally factors in
(7) then corresponds to a different time steps of the problem. For convenience:
in the following we will use this "time" terminology.

From (10) we see that the term in (8) quartic in the creation and destruction
operators has been replaced by one that is quadratic: The orginal H in the £th

factor of (7) has been replaced by an H(£) that is non-interacting and hence
its exponen'ial form is treatable by standard means. In particular we define

- + .5
H(2) = .; cish (R)st
ijs

We can now rewrite (7) as
- - - (
Z= Tro Tre rH(l)e tH(z)...e TH(L) (10)

and because of quartic form of H(L) we cin tracc sut the fermion degrees of
freedom to obtain

Z = Tr0 det (1 + B]BZ"'BL)
= Tro det (I + B2...BLB1)
elc
= Trozlol
wvhere
_=th(®)
82 = e
and

z(o] = det(I + B,...B/B/...By ) (11)

is the partition function associated with a given configuration of the Ising-
like variables.



THE GREEN'S FUNCTION

For every time step £, the Monte Carlo procedure consists of going from site
to site and deciding whether to accept or reject a spia flip. The decision
is generslly based on the Metropolis or heat bath algorithms. However in
contrast to classical statistical mechapics where one examines the ratio

o PHlo'], -BH[0]
we must examine
zlo']/z] 7]

The evaluation of z[0] generally involves (L+1)n3 multiplications where N is
the number of degrees of freedom ir the original problem. To reduce the com-
putation time, the following alternatives have been devised: The cycl:'c pro-
yerties of the products of the B's presented in (11) are used so at the £ih
time step

z[o] = det(T + B2+1 e BZBI"'BQ) (12)

Then for a new configuration we write the new BE as BRAQ' Hence

det (1 + B2+l"'BLB1"'B2A£)

2+1"'BLB1"'BR)

z[o] ~ det(] + B

Defining

gy = (I + Bl+1...BLB1...B£)-1 (13)
we can reexpress the ratio by

det[] +(gy - 14, - ] (14)
When the interactions are short ranged, A, - 1 is a sparse matrix and (14) can

gecerully be evaluated with operations of the order N”, N, or 1, provided By is
known.

On the surface g, requires as many operations to compute as the original
determinant. However there are several useful relations which allows the
operation count to be reduced. The first generates a new gk from the 8o
whenever the configuration changes. Sterting with '



B,B....B.A )}

g8p = (I +By,,...B;B,...BA,

one can show
N 7) =‘3£ - (1-32)(A2-I)g§ (15)

Because of the sparseness of (AQ-I) the equation can usually be solved for gi
in as few as O(N”) operations.

We also have a procedure to go from one time to another more efficiently then
by constructing the appropriate g from (13). It is

1

=B B; (16)

Bo+1 989

The main point is after having made g. via (13) at the very start of the sim-
ulation we in principle can generate all other g,'s in considerable few opera-
tions via (15) and (16) than by (13). In practice errors build-up and so to
maintain 4n acceptable level of precision (13) is used, from time to time, to
contrel these errors.

The functions g, instead of z{o] are the principal quantities needed and
computed in the simulations. This is some sense is a fortunate circumstance,
for one can show?™4

[gﬂ}ij = gij(i—l, £2-2)

where g is the following thermodynamic (or equal time) Green's function®
+ +
= >
Here £ implies £1 and 2+, f1+g with 0 < € « 1. Similarly one can show
<, (2)> = 1 2,2
ngie)> = Biit®

and al=~ find specific expressions?’% for the unequal time Green's functions
gij(ﬂ,m) in terms of products of the Bz's.

COMPUTER QUANTITIES

The Green'e function is the principal product of ou:r simulation. With it and
the use of Wick's thkeorcae, we are able to computc all relevant thermodyzamic
and many-body correlation functiona. Quantities computed by this metkod



include: the energy, specific heat, magnetic susceptibility, singlet super-
conducting susceptibility, density-density correlation function, the
polarizibility, etc. To illustrate the procedure, we will now sketch the
creputation of the average energy for the Hubbard hamiltonian.

E = <>

+
From (8) we see averages like (ciscj > and <n.fni¢> are needed. Since in (8)
+ +
it#), <c 6 > = - <c, sc.s> which is just gs To do the other type of
average, he ﬂust use W1ckJs theorem: 8

+ +

<n.,n. > = <c. C. . C. >
1t iy it 1Tc1+ 14
(c+ r >< + > + < + >< + >
= L. c. . C. N c.,C.
it it id 14 c1¢ it it 14

The averages in the first term on the right-hand side are just <n. > =1 -g
Those in the last term are zero! The Hubbard-Stratanovich transférmat1on took
term with explicit interactions between opposite spins and replaced it with one
that produces ap effective hamiltonian block diagonal in s. For purposes of
comp:iting <ci¢c. > etc. there are no correlations between spins so such
averages are zero. The spins correlations remain only implicitly: the spins
interact through the Ising spin field which may be regarded as an imaginary-
time dependent, external random field that is summed over all possible
configurations.

RESEARCH SUMMARY

To date, using the determinant method, we have performed quaatum Monte Carlo
simulations on two models: the spinless Fermion lattice gas and the Anderson
impurity problem. Work on the first model was recently completed; work on the
second was recently started.

SPINLESS FERMION LATTICE GAS

For a half-filled band the hamiltonian for this model is 3

- + 1 1
H= t 2 (cic. + CJC ) +V 2 \ﬂl 2)(01 2

<ij> J <ij>

As in the Hubbagd model cf and c¢. are fermion creation and destruction opera-
tors and n, - c.c, is the'fermiofi number operatcr. In the model, spinless
fermions hop on'a‘two-dimensional lattice with a nearest neighbor interaction
V. RPA calculations predict that the half-filled system undergoes a density-
wave transition for V > 0, an odd angular momentum pairing transition for small
negative V, and a condensation transition for more negative values of V. The



Isiag limit mat.ches onto the density wave tramsition for V > 0 and onto the
condensation transition for V < 0. A strong coupling expansion provides the
leading corrections to the Ising limit. The intermediate coupling regime was
explored by the Monte Carlo simulatinns and various Green's functions charac-
terizing the quantum correlations were evaluated. Then, using fircite size
scaling techniques, we determined the density wave and condensation phase
boundaries. At these transitious, measured quantities scaled well with the
ustal Ising indices. Unfortunately, tha weak coupling regime lies beyond the
reach of our simulations.

ANDERSON IMPURITY MODEL

The hamiltonian for this model is®

H=Z2 |[E
ks

+

, + +
K%s ¥ Vike(ksCes ¥ C£sks’]

t Eg(ng, + ng ) + Ungyne

Here electrons exist in a band described by E, or an impurity (f-level) state
with energy Ef. The band and impurity interact with energy V £ and if two
electrons try to occupy the impurity level they experience a Eoulomb repulsion
of strength U. This model admits a variety of possible physical phenomena
including local magnetic moment formation, vslence iluctuations, Kondo effect,
etc., and is commonly used to describe the properties of rare earth and
actinide materials.

The code for this simulation is written and tested for several very simple
cases. We are presently using the code to see how much of the Bethe-ansatz
solution® to the Anderson impurity model can be reproduced. In this solution
Ek is assumed to vary linearly with k. We have no results yet.

CONCLUDING REMARKS

We have presented an introductory description of the determinant method with
several important details for its practical implimentation. For more details
the Blankenbecker et al.,? the Hirsch,3 and the appendix of the Gubernatis

et al.* papers should be consulted. The latter also gives many detailed
results for the spinless Fermion lattice gas and useful ways to interpret the
data. Similar details for the Hubbard model are given in reference 3.
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